CS463 – Natural Language Processing

Basic Text Processing:

- > **Regular Expressions**
- > Text Normalization
- Word Tokenization
- Lemmatization and Stemming
- Sentence Segmentation and Decision Trees
- Minimum Edit Distance

Regular Expressions

- A formal language for specifying text strings.
- Formally, a regular expression is an algebraic notation for characterizing a set of strings.
- A regular expression search function will search through a **corpus**, returning all texts that match a **pattern**.
 - The simplest kind of regular expression is a sequence of simple characters.
 - For example:

RE	Example Patterns Matched
/woodchucks/	"interesting links to woodchucks and lemurs"
/a/	"Mary Ann stopped by Mona's"
/!/	"You've left the burglar behind again!" said Nori

Regular Expressions

- Regular expressions are **case sensitive**. This means that the pattern /woodchucks/ will not match the string "Woodchucks".
 - We can solve this by using square braces []
 - The string of characters inside the braces [] specifies a disjunction of characters to match.

RE	Match	Example Patterns
/[wW]oodchuck/	Woodchuck or woodchuck	"Woodchuck"
/[abc]/	'a', 'b', or 'c'	"In uomini, in sold <u>a</u> ti"
/[1234567890]/	any digit	"plenty of <u>7</u> to 5"
(T) C (1	1 1 4 51 4 10 11 1 4	

The use of the brackets [] to specify a disjunction of characters.

Regular Expressions: Disjunctions

Use dash – inside brackets to specify any one character in a range.

Pattern	Matches	Example Patterns Matched				
[A-Z]	An upper case letter	Drenched Blossoms				
[a-z]	A lower case letter	my beans were impatient				
[0-9]	A single digit	Chapter 1: Down the Rabbit Hole				

Regular Expressions: Negation in Disjunction

- Negations can be applied using the caret ^ symbol
 - Caret means negation only when first in []

Pattern	Matches	Example Patterns Matched
[^A-Z]	Not an upper case letter	O <u>y</u> fn pripetchik
[^Ss]	Neither 'S' nor 's'	<u>I</u> have no exquisite reason"
[^e^]	Neither e nor ^	Look he <u>r</u> e
a^b	The pattern <i>a</i> caret <i>b</i>	Look up <u>a^b</u> now

Regular Expressions: More Disjunction

- Woodchucks is another name for groundhog!
- The **pipe** | symbol for **disjunction**

Pattern	Matches
groundhog woodchuck	groundhog woodchuck
yours mine	yours mine
a b c	= [abc]
[gG]roundhog [Ww]oodchuck	groundhog woodchuck Groundhog Woodchuck

Regular Expressions: ? * +

- The question mark (?) Symbol means zero or one instance of the preceding character.
- The Kleene asterisk (*) symbol means zero or more occurrences of the preceding character.
- The Kleene (+) symbol means one or more occurrences of the preceding character.
- The period (.) symbol is a **wildcard** expression that matches **any single** character it represents within the pattern (except a carriage return).

Pattern	Matches	
colou?r	Optional previous char	Color Colour
oo*h!	0 or more of previous char	oh! ooh! oooh! ooooh!
o+h!	1 or more of previous char	oh! ooh! oooh! ooooh!
baa+	1 or more of previous char	baa baaaa baaaaa
beg.n	Only 1 character	begin begun begun beg3n

Regular Expressions: Anchors ^ \$

- Anchors are special characters that anchor regular expressions to particular places in a string.
- The caret (^) matches the **start of a line**.

- The pattern /^The/ matches the word "The" only at the start of a line.

- The dollar sign **\$** matches the **end of a line**.
 - $/^{The dog}.$ matches a line that contains only the phrase "The dog".

Pattern	Matches
^[A-Z]	Palo Alto
^[^A-Za-z]	<u>1</u> <u>Hello"</u>
\.\$	The end.
.\$	The end? The end!

Regular Expressions: Boundary Anchors \b \B

- There are also two other anchors: \b matches a word boundary, and \B matches a non-boundary.
- For the purposes of a regular expression, a "word" is defined as any sequence of digits, underscores, or letters.
- Examples:
 - $\wedge bthe b/ matches the word "the" but not the word "other".$
 - /\b99\b/ will match the string 99 in "There are 99 bottles of juice on the wall" (because 99 follows a space and precedes a space) but not 99 in "There are 299 bottles of juice on the wall" (since 99 follows a number). But it will match 99 in "\$99" (since 99 follows a dollar sign (\$), which is not a digit, underscore, or letter).
- What will be the results of using the other anchor: \B in the previous examples knowing that it matches a non-word boundary?

Example:

• Suppose we wanted to write a RE to find cases of the English article "the". A simple (but incorrect) pattern might be:

/the/

• One problem is that this pattern will miss the word when it begins a sentence and hence is capitalized (i.e., The). This might lead us to the following pattern:

/[tT]he/

- But we will still incorrectly return texts with the embedded in other words (e.g., other or theology).
- So we need to specify that we want instances with a word boundary on both sides:

Errors

- The process we just went through was based on fixing two kinds of errors
 - Matching strings that we should not have matched (there, then, other)
 - False positives (Type I)
 - Not matching things that we should have matched (The)
 - False negatives (Type II)

- In NLP we are always dealing with these kinds of errors.
- Reducing the error rate for an application often involves two antagonistic efforts:
 - Increasing accuracy or precision (minimizing false positives)
 - Increasing coverage or recall (minimizing false negatives).

Summary

- Regular expressions play a surprisingly large role
 - Sophisticated sequences of regular expressions are often the first model for any text processing
- For many hard tasks, we use machine learning classifiers
 - But regular expressions are used as features in the classifiers
 - Can be very useful in capturing generalizations

Basic Text Processing

Text normalization

Text normalization

- Normalizing text means converting it to a more convenient, standard form.
- **1.** Tokenization Splitting a phrase, sentence, paragraph, or an entire text document into smaller units, such as individual words or terms.
- 2. Lemmatization The task of determining that two words have the same root, despite their surface differences.
 - The words "sang", "sung", and "sings" are forms of the verb "sing". The word sing is the common lemma of these words, and a lemmatizer maps from all of these to "sing".
- 3. Stemming We mainly just strip suffixes from the end of the word.
 - The words "caring", "careful" are stemmed to "car", and the words "history" and "historical" are stemmed to "histori"
- **4.** Sentence Segmentation We break up a text into individual sentences, using cues like periods or exclamation points.

Normalization

- Need to "normalize" terms
 - Information Retrieval: indexed text to query terms must have same form.
 - We want to match *U.S.A.* and *USA*
- We implicitly define equivalence classes of terms

 e.g., deleting periods in a term
- Alternative: asymmetric expansion:
 - Enter: *window* Search: *window, windows*
 - -Enter: *windows* Search: *Windows, windows, window*
 - Enter: Windows Search: Windows

- Applications like IR (Information Retrieval): reduce all letters to lower case
 - -Since users tend to use lower case
 - -Possible exception: upper case in mid-sentence?
 - e.g., General Motors
 - Fed vs. fed
 - SAIL vs. sail
- For sentiment analysis, MT (Machine Translate), Information extraction

-Case is helpful (US versus us is important)

Basic Text Processing

Word tokenization

- Every NLP task needs to do text normalization:
 - 1. Segmenting/tokenizing words in running text
 - 2. Normalizing word formats
 - 3. Segmenting sentences in running text

How many words?

- A lemma is a set of lexical forms having
 - cat and cats = same lemma
- The wordform is the full inflected or derived form of the word.
 - cat and cats = different wordforms

They lay back on the San Francisco grass and looked at the stars and their

- **Type**: an element of the vocabulary.
- Token: an instance of that type in running text.
- How many?
 - 15 tokens (or 14)
 - 13 types (or 12)

How many words?

N = number of tokens

- V = vocabulary = set of types
 - |V| is the size of the vocabulary

Church and Gale (1990): $|V| > O(N^{\frac{1}{2}})$

Corpus	Tokens = N	Types = $ V $
Shakespeare	884 thousand	31 thousand
Brown corpus	1 million	38 thousand
Switchboard telephone conversations	2.4 million	20 thousand
COCA	440 million	2 million
Google N-grams	1 trillion	13 million

Simple Tokenization in UNIX

• We can use command **tr** to tokenize the words by changing every sequence of non alphabetic characters to a newline ('A-Za-z' means alphabetic, the -c option complements to non-alphabet, and the -s option squeezes all sequences into a Single character):

tr -sc 'A-Za-z' '/n' < shakes.txt

The output of this command will be:

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

shakes.txt

THE SONNETS by William Shakespeare From fairest creatures We

Simple Tokenization in UNIX

• Now that there is one word per line, we can **sort** the lines, and pass them to **unique -c** which will collapse and count them:

tr -sc 'A-Za-z' '/n' < shakes2.txt | sort | uniq -c with the following output: 1945 A 72 AARON **19 ABBESS** 25 Aaron 6 Abate 1 Abates 5 Abbess 6 Abbey

3 Abbot

Issues in Tokenization

- Finland's capital → Finland Finland's ?
- what're, I'm, isn't \rightarrow What are, I am, is not
- Hewlett-Packard \rightarrow Hewlett Packard ?
- state-of-the-art \rightarrow state of the art ?
- Lowercase \rightarrow lower-case lowercase lower case ?
- San Francisco \rightarrow one token or two?
- m.p.h., PhD. \rightarrow ??

Basic Text Processing

Lemmatization and Stemming

Lemmatization

- Reduce inflections or variant forms to base form
 - -am, are, is $\rightarrow be$
 - $-car, cars, car's, cars' \rightarrow car$
- the boy's cars are different colors → the boy car be different color
- Lemmatization: have to find correct dictionary headword form
- Machine translation
 - In Spanish: quiero ('I want'), quieres ('you want') same lemma as querer 'want'

Morphology

- It is the study of the internal structure of words.
- Morphology focuses on how the components within a word (stems, root words, prefixes, suffixes, etc.) are arranged or modified to create different meanings.
- Example: happy; un-happy; happy-ness; un-happy-ness
- Morphemes:
 - The small meaningful units that make up words
 - **Stems**: The core meaning-bearing units
 - Affixes: Bits and pieces that adhere to stems
 - Often with grammatical functions

Stemming

- Reduce terms to their stems in information retrieval.
- *Stemming* is crude chopping of affixes
 - language dependent
 - e.g., *automate(s)*, *automatic*, *automation* all reduced to *automat*.

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

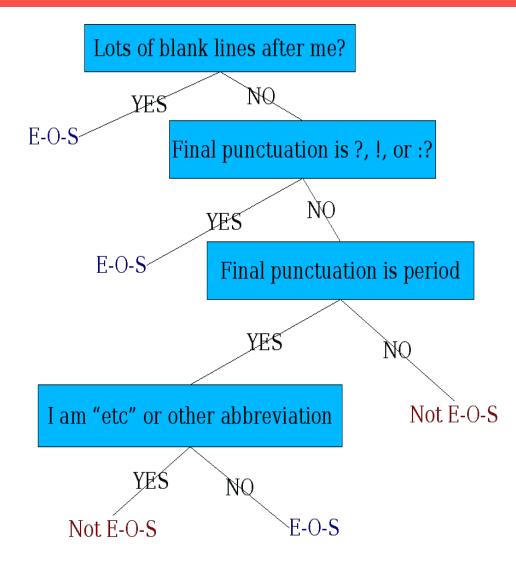
Basic Text Processing

Sentence Segmentation and Decision Trees

Sentence Segmentation

- Sentence segmentation is another important step in text processing. The most useful cues for segmenting a text into sentences are punctuation, like periods (.), question marks (?), exclamation points (!).
- (?) and (!) are relatively unambiguous markers of sentence boundaries.
- (.) on the other hand, are more ambiguous.
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Sentence tokenization methods work by building a binary classifier.
 - Look at a period "."
 - Decide EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machine-learning

Determining if a word is End-of-Sentence: Decision Tree



More sophisticated decision tree features

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number
- Numeric features
 - Length of word with "."
 - Probability(word with "." occurs at end-of-s)
 - Probability(word after "." occurs at beginning-of-s)

Implementing Decision Trees

- A decision tree is just an if-then-else statement.
- The interesting research is choosing the features.
- Setting up the structure is often too hard to do by hand.
 - Hand-building only possible for very simple features, domains
 - For numeric features, it's too hard to pick each threshold
- Instead, structure usually learned by machine learning from a training corpus

Basic Text Processing

Minimum Edit Distance

How similar are two strings?

- Spell correction
 - The user typed "graffe"
 - Which is closest?
 - graf
 - graft
 - grail
 - giraffe

- Computational Biology
 - Align two sequences of nucleotides AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC
 - Resulting alignment:
 - -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCCGAC

 Also for Machine Translation, Information Extraction, Speech Recognition

Minimum Edit Distance

- The minimum edit distance between two strings.
- It is the minimum number of editing operations.
 - -Insertion
 - Deletion
 - Substitution
- Needed to transform one into the other.

Minimum Edit Distance

INTE * NTION | | | | | | | | | | * EXECUTION d s s i s

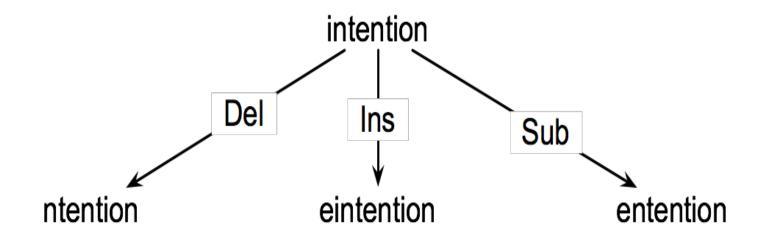
d-> delete s-> substitution i-> insert

- If each operation has cost of 1, then Distance between these is 5
- If substitution operation cost 2, then Distance between them is 8

 The gap between intention and execution, for example, is 5 (delete an i, substitute e for n, substitute x for t, insert c, substitute u for n).
 3 substitution + 1 insert + 1 delete =5

How to find the Min Edit Distance?

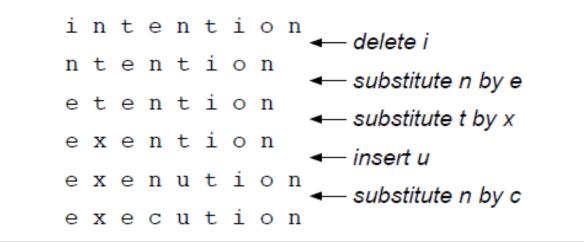
- Searching for a path (sequence of edits) from the start string to the final string:
 - Initial state: the word we're transforming
 - Operators: insert, delete, substitute
 - Goal state: the word we're trying to get to
 - Path cost: what we want to minimize: the number of edits



Defining Min Edit Distance

- For two strings
 - -X of length n
 - -Y of length m
- We define D(i,j)
 - the edit distance between X[1..i] and Y[1..j]
 - i.e., the first *i* characters of X and the first *j* characters of Y
 - The edit distance between X and Y is thus D(n,m)

Minimum Edit Distance - Example



Path from intention to execution.

 $D[i, j] = \min \begin{cases} D[i-1, j] + \text{del-cost}(source[i]) \\ D[i, j-1] + \text{ins-cost}(target[j]) \\ D[i-1, j-1] + \text{sub-cost}(source[i], target[j]) \end{cases}$ $D[i, j] = \min \begin{cases} D[i-1, j] + 1 \\ D[i, j-1] + 1 \\ D[i-1, j-1] + 1 \\ D[i-1, j-1] + 1 \end{cases} \begin{cases} 2; \text{ if } source[i] \neq target[j] \\ 0; \text{ if } source[i] = target[j] \end{cases}$

Minimum Edit Distance - Example

Src\Tar	#	е	Х	e	с	u	t	i	0	n
#	0	1	2	3	4	5	6	7	8	9
i	1	2	3	4	5	6	7	6	7	8
n	2	3	4	5	6	7	8	7	8	7
t	3	4	5	6	7	8	7	8	9	8
e	4	3	4	5	6	7	8	9	10	9
n	5	4	5	6	7	8	9	10	11	10
t	6	5	6	7	8	9	8	9	10	11
i	7	6	7	8	9	10	9	8	9	10
0	8	7	8	9	10	11	10	9	8	9
n	9	8	9	10	11	12	11	10	9	8