
CS463 – Natural Language Processing

Basic Text Processing:
 Regular Expressions
 Text Normalization
 Word Tokenization
 Lemmatization and Stemming
 Sentence Segmentation and Decision Trees
 Minimum Edit Distance

Regular Expressions
• A formal language for specifying text strings.
• Formally, a regular expression is an algebraic notation for

characterizing a set of strings.
• A regular expression search function will search through a

corpus, returning all texts that match a pattern.
– The simplest kind of regular expression is a sequence of simple

characters.
– For example:

2

Regular Expressions
• Regular expressions are case sensitive. This means that the

pattern /woodchucks/ will not match the string “Woodchucks”.
– We can solve this by using square braces []
– The string of characters inside the braces [] specifies a disjunction of

characters to match.

3

Regular Expressions: Disjunctions

• Use dash - inside brackets to specify any one character in a
range.

Pattern Matches Example Patterns Matched
[A-Z] An upper case

letter
Drenched Blossoms

[a-z] A lower case letter my beans were impatient

[0-9] A single digit Chapter 1: Down the Rabbit
Hole

4

Regular Expressions: Negation in Disjunction

• Negations can be applied using the caret ^ symbol
– Caret means negation only when first in []

Pattern Matches Example Patterns
Matched

[^A-Z] Not an upper case letter Oyfn pripetchik

[^Ss] Neither ‘S’ nor ‘s’ I have no
exquisite
reason”

[^e^] Neither e nor ^ Look here

a^b The pattern a caret b Look up a^b now

5

Regular Expressions: More Disjunction

• Woodchucks is another name for groundhog!
• The pipe | symbol for disjunction

Pattern Matches
groundhog|woodchuck groundhog

woodchuck

yours|mine yours
mine

a|b|c = [abc]

[gG]roundhog|[Ww]oodchuck groundhog
woodchuck
Groundhog
Woodchuck 6

Regular Expressions: ? * + .

Pattern Matches

colou?r Optional previous char Color
Colour

oo*h! 0 or more of previous char oh! ooh! oooh! ooooh!

o+h! 1 or more of previous char oh! ooh! oooh! ooooh!

baa+ 1 or more of previous char baa baaa baaaa baaaaa

beg.n Only 1 character begin begun begun beg3n

7

• The question mark (?) Symbol means zero or one instance of the preceding character.
• The Kleene asterisk (*) symbol means zero or more occurrences of the preceding character.
• The Kleene (+) symbol means one or more occurrences of the preceding character.
• The period (.) symbol is a wildcard expression that matches any single character it

represents within the pattern (except a carriage return).

Regular Expressions: Anchors ^ $
• Anchors are special characters that anchor regular expressions to particular

places in a string.

• The caret (^) matches the start of a line.
– The pattern /^The/ matches the word “The” only at the start of a line.

• The dollar sign $ matches the end of a line.
– /^The dog\.$/ matches a line that contains only the phrase “The dog”.

Pattern Matches
^[A-Z] Palo Alto

^[^A-Za-z] 1 “Hello”

\.$ The end.

.$ The end? The end!
8

Regular Expressions: Boundary Anchors \b \B
• There are also two other anchors: \b matches a word boundary, and \B

matches a non-boundary.
• For the purposes of a regular expression, a “word” is defined as any

sequence of digits, underscores, or letters.

• Examples:
– /\bthe\b/ matches the word “the” but not the word “other”.

– /\b99\b/ will match the string 99 in “There are 99 bottles of juice on the wall”
(because 99 follows a space and precedes a space) but not 99 in “There are
299 bottles of juice on the wall” (since 99 follows a number). But it will match
99 in “$99” (since 99 follows a dollar sign ($), which is not a digit, underscore,
or letter).

• What will be the results of using the other anchor: \B in the previous
examples knowing that it matches a non-word boundary?

9

Example:
• Suppose we wanted to write a RE to find cases of the

English article “the”. A simple (but incorrect) pattern might
be:

/the/
• One problem is that this pattern will miss the word when it

begins a sentence and hence is capitalized (i.e., The). This
might lead us to the following pattern:

/[tT]he/
• But we will still incorrectly return texts with the embedded

in other words (e.g., other or theology).
• So we need to specify that we want instances with a word

boundary on both sides:
/\b[tT]he\b/ 10

Errors

• The process we just went through was based on
fixing two kinds of errors
– Matching strings that we should not have matched (there,

then, other)
• False positives (Type I)

– Not matching things that we should have matched (The)
• False negatives (Type II)

11

• In NLP we are always dealing with these kinds of
errors.

• Reducing the error rate for an application often
involves two antagonistic efforts:
– Increasing accuracy or precision (minimizing false positives)
– Increasing coverage or recall (minimizing false negatives).

12

Errors cont.

Summary

• Regular expressions play a surprisingly large role
– Sophisticated sequences of regular expressions are often the first

model for any text processing
• For many hard tasks, we use machine learning classifiers

– But regular expressions are used as features in the classifiers
– Can be very useful in capturing generalizations

13

Basic Text Processing

Text normalization

Text normalization
• Normalizing text means converting it to a more convenient, standard

form.
1. Tokenization - Splitting a phrase, sentence, paragraph, or an entire

text document into smaller units, such as individual words or terms.
2. Lemmatization - The task of determining that two words have the

same root, despite their surface differences.
– The words “sang”, “sung”, and “sings” are forms of the verb “sing”. The

word sing is the common lemma of these words, and a lemmatizer maps
from all of these to “sing”.

3. Stemming - We mainly just strip suffixes from the end of the word.
– The words “caring”, “careful” are stemmed to “car”, and the words

“history” and “historical” are stemmed to “histori”
4. Sentence Segmentation - We break up a text into individual

sentences, using cues like periods or exclamation points.
15

Normalization
• Need to “normalize” terms

– Information Retrieval: indexed text to query terms must
have same form.

• We want to match U.S.A. and USA

• We implicitly define equivalence classes of terms
– e.g., deleting periods in a term

• Alternative: asymmetric expansion:
– Enter: window Search: window, windows
– Enter: windows Search: Windows, windows, window
– Enter: Windows Search: Windows

16

Case folding

• Applications like IR (Information Retrieval):
reduce all letters to lower case
–Since users tend to use lower case
–Possible exception: upper case in mid-sentence?

• e.g., General Motors
• Fed vs. fed
• SAIL vs. sail

• For sentiment analysis, MT (Machine
Translate), Information extraction
–Case is helpful (US versus us is important)

17

Basic Text Processing

Word tokenization

Text Normalization

• Every NLP task needs to do text normalization:
1. Segmenting/tokenizing words in running text

2. Normalizing word formats

3. Segmenting sentences in running text

19

How many words?

• A lemma is a set of lexical forms having
• cat and cats = same lemma

– The wordform is the full inflected or derived form
of the word.

• cat and cats = different wordforms

20

How many words?

They lay back on the San Francisco grass and looked at the stars and their

• Type: an element of the vocabulary.

• Token: an instance of that type in running text.

• How many?

• 15 tokens (or 14)

• 13 types (or 12)

21

N = number of tokens
V = vocabulary = set of types

|V| is the size of the vocabulary
Church and Gale (1990): |V| > O(N½)

22

How many words?

Simple Tokenization in UNIX
• We can use command tr to tokenize the words by changing every sequence of

non alphabetic characters to a newline (’A-Za-z’ means alphabetic, the -c
option complements to non-alphabet, and the -s option squeezes all sequences
into a Single character):

tr -sc 'A-Za-z’ ‘/n' < shakes.txt
The output of this command will be:
THE shakes.txt
SONNETS
by
William
Shakespeare
From
fairest
creatures
We
...

THE SONNETS by William
Shakespeare From fairest creatures
We ….

23

Simple Tokenization in UNIX
• Now that there is one word per line, we can sort the lines, and
pass them to unique -c which will collapse and count them:

tr -sc 'A-Za-z' ‘/n' < shakes2.txt | sort | uniq -c
with the following output:
1945 A
72 AARON
19 ABBESS
25 Aaron
6 Abate
1 Abates
5 Abbess
6 Abbey
3 Abbot
...

24

Issues in Tokenization

• Finland’s capital Finland Finlands Finland’s ?
• what’re, I’m, isn’t What are, I am, is not
• Hewlett-Packard Hewlett Packard ?
• state-of-the-art state of the art ?
• Lowercase lower-case lowercase lower case ?
• San Francisco one token or two?
• m.p.h., PhD. ??

25

Basic Text Processing

Lemmatization and Stemming

Lemmatization
• Reduce inflections or variant forms to base form

– am, are, is be
– car, cars, car's, cars' car

• the boy's cars are different colors the boy car be different
color

• Lemmatization: have to find correct dictionary headword form

• Machine translation
– In Spanish: quiero (‘I want’), quieres (‘you want’) same lemma as

querer ‘want’

27

Morphology

• Morphemes:

– The small meaningful units that make up words

– Stems: The core meaning-bearing units

– Affixes: Bits and pieces that adhere to stems

• Often with grammatical functions

28

• It is the study of the internal structure of words.
• Morphology focuses on how the components within a word (stems, root

words, prefixes, suffixes, etc.) are arranged or modified to create different
meanings.

• Example: happy; un-happy; happy-ness; un-happy-ness

Stemming
• Reduce terms to their stems in information retrieval.
• Stemming is crude chopping of affixes

– language dependent
– e.g., automate(s), automatic, automation all reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

29

Basic Text Processing

Sentence Segmentation and Decision Trees

Sentence Segmentation
• Sentence segmentation is another important step in text processing. The

most useful cues for segmenting a text into sentences are punctuation, like
periods (.), question marks (?), exclamation points (!).

• (?) and (!) are relatively unambiguous markers of sentence boundaries.
• (.) on the other hand, are more ambiguous.

– Sentence boundary
– Abbreviations like Inc. or Dr.
– Numbers like .02% or 4.3

• Sentence tokenization methods work by building a binary classifier.
– Look at a period “.”
– Decide EndOfSentence/NotEndOfSentence
– Classifiers: hand-written rules, regular expressions, or machine-learning

31

Determining if a word is End-of-Sentence: Decision Tree

32

More sophisticated decision tree features

• Case of word with “.”: Upper, Lower, Cap, Number
• Case of word after “.”: Upper, Lower, Cap, Number

• Numeric features
– Length of word with “.”
– Probability(word with “.” occurs at end-of-s)
– Probability(word after “.” occurs at beginning-of-s)

33

Implementing Decision Trees
• A decision tree is just an if-then-else statement.
• The interesting research is choosing the features.
• Setting up the structure is often too hard to do by hand.

– Hand-building only possible for very simple features,
domains
• For numeric features, it’s too hard to pick each

threshold
• Instead, structure usually learned by machine learning from

a training corpus

34

Basic Text Processing

Minimum Edit Distance

How similar are two strings?

• Spell correction
– The user typed “graffe”
– Which is closest?

• graf
• graft
• grail
• giraffe

• Computational Biology
• Align two sequences of nucleotides

• Resulting alignment:

• Also for Machine Translation, Information Extraction, Speech
Recognition

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

36

Minimum Edit Distance
• The minimum edit distance between two strings.

• It is the minimum number of editing operations.
– Insertion
– Deletion
– Substitution

• Needed to transform one into the other.

37

• If each operation has cost of 1, then Distance between these is 5
• If substitution operation cost 2, then Distance between them is 8

– The gap between intention and execution, for example, is 5 (delete
an i, substitute e for n, substitute x for t, insert c, substitute u for n).
3 substitution + 1 insert + 1 delete =5

d-> delete
s-> substitution
i-> insert

38

Minimum Edit Distance

How to find the Min Edit Distance?
• Searching for a path (sequence of edits) from the start string

to the final string:
– Initial state: the word we’re transforming
– Operators: insert, delete, substitute
– Goal state: the word we’re trying to get to
– Path cost: what we want to minimize: the number of edits

39

Defining Min Edit Distance

• For two strings
– X of length n
– Y of length m

• We define D(i,j)
– the edit distance between X[1..i] and Y[1..j]

• i.e., the first i characters of X and the first j characters of Y
– The edit distance between X and Y is thus D(n,m)

40

Minimum Edit Distance - Example

41

42

Minimum Edit Distance - Example

