
CS463 – Natural Language Processing

Basic Text Processing:
 Regular Expressions
 Text Normalization
 Word Tokenization
 Lemmatization and Stemming
 Sentence Segmentation and Decision Trees
 Minimum Edit Distance



Regular Expressions
• A formal language for specifying text strings.
• Formally, a regular expression is an algebraic notation for 

characterizing a set of strings.
• A regular expression search function will search through a 

corpus, returning all texts that match a pattern.
– The simplest kind of regular expression is a sequence of simple 

characters.
– For example:
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Regular Expressions
• Regular expressions are case sensitive. This means that the 

pattern /woodchucks/ will not match the string “Woodchucks”.
– We can solve this by using square braces []
– The string of characters inside the braces [] specifies a disjunction of 

characters to match.
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Regular Expressions: Disjunctions

• Use dash - inside brackets to specify any one character in a 
range.

Pattern Matches Example Patterns Matched
[A-Z] An upper case 

letter
Drenched Blossoms

[a-z] A lower case letter my beans were impatient

[0-9] A single digit Chapter 1: Down the Rabbit 
Hole
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Regular Expressions: Negation in Disjunction

• Negations can be applied using the caret ^ symbol
– Caret means negation only when first in []

Pattern Matches Example Patterns 
Matched

[^A-Z] Not an upper case letter Oyfn pripetchik

[^Ss] Neither ‘S’ nor ‘s’ I have no 
exquisite 
reason”

[^e^] Neither e nor ^ Look here

a^b The pattern a caret b Look up a^b now
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Regular Expressions: More Disjunction

• Woodchucks is another name for groundhog!
• The pipe | symbol for disjunction

Pattern Matches
groundhog|woodchuck groundhog 

woodchuck

yours|mine yours
mine

a|b|c = [abc]

[gG]roundhog|[Ww]oodchuck groundhog 
woodchuck
Groundhog 
Woodchuck 6



Regular Expressions: ? * + .

Pattern Matches

colou?r Optional previous char Color
Colour

oo*h! 0 or more of previous char oh! ooh!  oooh! ooooh!

o+h! 1 or more of previous char oh! ooh!  oooh! ooooh!

baa+ 1 or more of previous char baa baaa baaaa baaaaa

beg.n Only 1 character begin begun begun beg3n
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• The question mark (?) Symbol means zero or one instance of the preceding character.
• The Kleene asterisk (*) symbol means zero or more occurrences of the preceding character.
• The Kleene (+) symbol means one or more occurrences of the preceding character.
• The period (.) symbol is a wildcard expression that matches any single character it 

represents within the pattern (except a carriage return).



Regular Expressions: Anchors  ^   $
• Anchors are special characters that anchor regular expressions to particular 

places in a string.

• The caret (^) matches the start of a line.
– The pattern /^The/ matches the word “The” only at the start of a line.

• The dollar sign $ matches the end of a line.
– /^The dog\.$/ matches a line that contains only the phrase “The dog”.

Pattern Matches
^[A-Z] Palo Alto

^[^A-Za-z] 1 “Hello”

\.$ The end.

.$ The end? The end!
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Regular Expressions: Boundary Anchors  \b \B
• There are also two other anchors: \b matches a word boundary, and \B

matches a non-boundary.
• For the purposes of a regular expression, a “word” is defined as any 

sequence of digits, underscores, or letters.

• Examples:
– /\bthe\b/ matches the word “the” but not the word “other”.

– /\b99\b/ will match the string 99 in “There are 99 bottles of juice on the wall”
(because 99 follows a space and precedes a space) but not 99 in “There are
299 bottles of juice on the wall” (since 99 follows a number). But it will match
99 in “$99” (since 99 follows a dollar sign ($), which is not a digit, underscore,
or letter).

• What will be the results of using the other anchor: \B in the previous
examples knowing that it matches a non-word boundary?
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Example:
• Suppose we wanted to write a RE to find cases of the 

English article “the”. A simple (but incorrect) pattern might 
be:

/the/
• One problem is that this pattern will miss the word when it 

begins a sentence and hence is capitalized (i.e., The). This 
might lead us to the following pattern:

/[tT]he/
• But we will still incorrectly return texts with the embedded 

in other words (e.g., other or theology).
• So we need to specify that we want instances with a word 

boundary on both sides:
/\b[tT]he\b/ 10



Errors

• The process we just went through was based on 
fixing two kinds of errors
– Matching strings that we should not have matched (there, 

then, other)
• False positives (Type I)

– Not matching things that we should have matched (The)
• False negatives (Type II)
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• In NLP we are always dealing with these kinds of 
errors.

• Reducing the error rate for an application often 
involves two antagonistic efforts: 
– Increasing accuracy or precision (minimizing false positives)
– Increasing coverage or recall (minimizing false negatives).
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Summary

• Regular expressions play a surprisingly large role
– Sophisticated sequences of regular expressions are often the first 

model for any text processing
• For many hard tasks, we use machine learning classifiers

– But regular expressions are used as features in the classifiers
– Can be very useful in capturing generalizations
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Basic Text Processing

Text normalization



Text normalization
• Normalizing text means converting it to a more convenient, standard 

form.
1. Tokenization - Splitting a phrase, sentence, paragraph, or an entire 

text document into smaller units, such as individual words or terms.
2. Lemmatization - The task of determining that two words have the 

same root, despite their surface differences.
– The words “sang”, “sung”, and “sings” are forms of the verb “sing”. The 

word sing is the common lemma of these words, and a lemmatizer maps 
from all of these to “sing”.

3. Stemming - We mainly just strip suffixes from the end of the word.
– The words “caring”, “careful”  are stemmed to “car”, and the words 

“history” and “historical” are stemmed to “histori”
4. Sentence Segmentation - We break up a text into individual 

sentences, using cues like periods or exclamation points.
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Normalization
• Need to “normalize” terms 

– Information Retrieval: indexed text to query terms must 
have same form.

• We want to match U.S.A. and USA

• We implicitly define equivalence classes of terms
– e.g., deleting periods in a term

• Alternative: asymmetric expansion:
– Enter: window Search: window, windows
– Enter: windows Search: Windows, windows, window
– Enter: Windows Search: Windows
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Case folding

• Applications like IR (Information Retrieval): 
reduce all letters to lower case
–Since users tend to use lower case
–Possible exception: upper case in mid-sentence?

• e.g., General Motors
• Fed vs. fed
• SAIL vs. sail

• For sentiment analysis, MT (Machine 
Translate), Information extraction
–Case is helpful (US versus us is important)
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Basic Text Processing

Word tokenization



Text Normalization

• Every NLP task needs to do text normalization: 
1. Segmenting/tokenizing words in running text

2. Normalizing word formats

3. Segmenting sentences in running text
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How many words?

• A lemma is a set of lexical forms having
• cat and cats = same lemma

– The wordform is the full inflected or derived form 
of the word.

• cat and cats = different wordforms
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How many words?

They lay back on the San Francisco grass and looked at the stars and their

• Type: an element of the vocabulary.

• Token: an instance of that type in running text.

• How many?

• 15 tokens (or 14)

• 13 types (or 12) 
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N = number of tokens
V = vocabulary = set of types

|V| is the size of the vocabulary
Church and Gale (1990): |V| > O(N½)
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How many words?



Simple Tokenization in UNIX
• We can use command tr to tokenize the words by changing every sequence of 

non alphabetic characters to a newline (’A-Za-z’ means alphabetic, the -c 
option  complements to non-alphabet, and the -s option squeezes all sequences 
into a Single character):

tr -sc 'A-Za-z’ ‘/n' < shakes.txt
The output of this command will be:
THE shakes.txt
SONNETS
by
William
Shakespeare
From
fairest
creatures
We
...

THE SONNETS by William 
Shakespeare From fairest creatures 
We ….
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Simple Tokenization in UNIX
• Now that there is one word per line, we can sort the lines, and 
pass them to unique -c which will collapse and count them:

tr -sc 'A-Za-z' ‘/n' < shakes2.txt | sort | uniq -c
with the following output:
1945 A
72 AARON
19 ABBESS
25 Aaron
6 Abate
1 Abates
5 Abbess
6 Abbey
3 Abbot
...
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Issues in Tokenization

• Finland’s capital  Finland Finlands Finland’s  ?
• what’re, I’m, isn’t   What are, I am, is not
• Hewlett-Packard       Hewlett Packard ?
• state-of-the-art      state of the art ?
• Lowercase  lower-case lowercase lower case ?
• San Francisco  one token or two?
• m.p.h., PhD.  ??
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Basic Text Processing

Lemmatization and Stemming



Lemmatization
• Reduce inflections or variant forms to base form

– am, are, is  be
– car, cars, car's, cars' car

• the boy's cars are different colors the boy car be different 
color

• Lemmatization: have to find correct dictionary headword form

• Machine translation
– In Spanish: quiero (‘I want’), quieres (‘you want’) same lemma as 

querer ‘want’
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Morphology

• Morphemes:

– The small meaningful units that make up words

– Stems: The core meaning-bearing units

– Affixes: Bits and pieces that adhere to stems

• Often with grammatical functions
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• It is the study of the internal structure of words.
• Morphology focuses on how the components within a word (stems, root 

words, prefixes, suffixes, etc.) are arranged or modified to create different 
meanings. 

• Example: happy; un-happy; happy-ness; un-happy-ness



Stemming
• Reduce terms to their stems in information retrieval.
• Stemming is crude chopping of affixes

– language dependent
– e.g., automate(s), automatic, automation all reduced to automat.

for example compressed 
and compression are both 
accepted as equivalent to 
compress.

for exampl compress and
compress ar both accept
as equival to compress
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Basic Text Processing

Sentence Segmentation and Decision Trees



Sentence Segmentation
• Sentence segmentation is another important step in text processing. The 

most useful cues for segmenting a text into sentences are punctuation, like 
periods (.), question marks (?), exclamation points (!).

• (?) and (!) are relatively unambiguous markers of sentence boundaries.
• (.) on the other hand, are more ambiguous.

– Sentence boundary
– Abbreviations like Inc. or Dr.
– Numbers like .02% or 4.3

• Sentence tokenization methods work by building a binary classifier.
– Look at a period “.”
– Decide EndOfSentence/NotEndOfSentence
– Classifiers: hand-written rules, regular expressions, or machine-learning

31



Determining if a word is End-of-Sentence:  Decision Tree
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More sophisticated decision tree features

• Case of word with “.”: Upper, Lower, Cap, Number
• Case of word after “.”: Upper, Lower, Cap, Number

• Numeric features
– Length of word with “.”
– Probability(word with “.” occurs at end-of-s)
– Probability(word after “.” occurs at beginning-of-s)
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Implementing Decision Trees
• A decision tree is just an if-then-else statement.
• The interesting research is choosing the features.
• Setting up the structure is often too hard to do by hand.

– Hand-building only possible for very simple features, 
domains
• For numeric features, it’s too hard to pick each 

threshold
• Instead, structure usually learned by machine learning from 

a training corpus
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Basic Text Processing

Minimum Edit Distance



How similar are two strings?

• Spell correction
– The user typed “graffe”
– Which is closest? 

• graf
• graft
• grail
• giraffe

• Computational Biology
• Align two sequences of nucleotides

• Resulting alignment:

• Also for Machine Translation, Information Extraction, Speech 
Recognition

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
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Minimum Edit Distance
• The minimum edit distance between two strings.

• It is the minimum number of editing operations.
– Insertion
– Deletion
– Substitution

• Needed to transform one into the other. 
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• If each operation has cost of 1, then Distance between these is 5
• If substitution operation cost 2, then Distance between them is 8

– The gap between intention and execution, for example, is 5 (delete 
an i, substitute e for n, substitute x for t, insert c, substitute u for n).
3 substitution + 1 insert + 1 delete =5

d-> delete
s-> substitution
i-> insert
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Minimum Edit Distance



How to find the Min Edit Distance?
• Searching for a path (sequence of edits) from the start string 

to the final string:
– Initial state: the word we’re transforming
– Operators: insert, delete, substitute
– Goal state:  the word we’re trying to get to
– Path cost: what we want to minimize: the number of edits
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Defining Min Edit Distance

• For two strings
– X of length n
– Y of length m

• We define D(i,j)
– the edit distance between X[1..i] and Y[1..j] 

• i.e., the first i characters of X and the first j characters of Y
– The edit distance between X and Y is thus D(n,m)
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Minimum Edit Distance - Example
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Minimum Edit Distance - Example


